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To investigate the field equations of the Kerr model and their invariance properties by use 
of a freely falling system we start with a flat rotating model and simulate a freely falling 
system by means of accelerated observers. We find similarities to the theory of the 
electrodynamics of moving bodies.  
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1. INTRODUCTION 

To present the basic structure of a freely falling system we use a flat rotating model 
endowed with a spherical reference system. In Sec. 2 rigid rotating frames are introduced 
by an active Lorentz transformation. Although the space is flat, the dynamics of this system 
is treated in terms of the Riemannian geometry. This provides a close relation to the 
rotating gravitational models. The equations for the rotational fields, derived from the 
vanishing Ricci tensor, are relativistic generalizations of the equations for classical rotating 
systems and they exhibit a similarity to the equations of the electrodynamics. As the Ricci 
equations are a set of non-linear equations, the sources of the fields are quadratic in the 
field strengths. 

In Sec. 3 we perform an additional Lorentz transformation with non-constant velocity 
vectors. Thus, we will be able to simulate a freely falling system, if we demand the 
observers’ velocities to point towards the center of the rotation. We show that the field 
equations for the rotating system are invariant under this passive Lorentz transformation.  

In Sec. 4 we make a more general ansatz for the acceleration. We decompose the 
field equations with respect to the accelerated system and we find the field equations to be 
invariant under active Lorentz transformations. We also elaborate some similarities to the 
theory of moving bodies in the theory of electrodynamics.  

 

2. A SIMPLIFIED MODEL 

In the end, our aim is to study the field equations of the Kerr metric for freely falling 
observers. To get a plain formalism for this problem we simplify the model. We start with a 
flat geometry and we use a spherical reference system with respect to the first three 
dimensions. The 4-bein reads as 

 
41 2 3

1 2 3 4e 1, e r , e , e 1, r sin= = = σ = σ = ϑ . (2.1) 

By using four orthogonal unit vectors  

 { } { } { } { }n n n nm 1,0,0,0 , b 0,1,0,0 , c 0,0,1,0 , u 0,0,0,1= = = =  (2.2)  

we obtain the connexion coefficients 
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s s s s ss s s s
mn mn mn mn m n m n mn m n m n

n n

A B C , B b B b b b B C c C c c c C

1 1 1
B ,0,0,0 , C , cot ,0,0

r r r

= + = − = −

   
= = ϑ   
   

. (2.3) 

The field equations for these quantities are derived from mnR 0≡  and describe the 

curvature of the slices of the spheres 

 
2 3

n||m n m n ||m n mB B B 0, C C C 0+ = + = . (2.4) 

Here the graded covariant derivatives [1] have been used. We perform an active Lorentz 
transformation with constant angular velocity ω   

 3' 3' 4 ' 4' 2 2
3 R 4 R 3 R 4 R RL , L i , L i , L , 1 1= α = α ωσ = − α ωσ = α α = − ω σ . (2.5) 

In the new system, the rotational effects can be observed as Coriolis and centrifugal 
forces. The resulting anholonomic bein-vectors are defined by 

 

3' 4' 4'3' 2
43 R 4 R 3 R R

3 4 3 4R
R R R

3' 3' 4' 4'

e , e i , e i , e

e , e i , e i , e

= α σ = α ωσ = − α ωσ = α

α
= = α ωσ = − α ω = α

σ

 (2.6) 

as an additional structure in the flat geometry. The co-ordinate system is still the static one. 
The covariant derivative transforms under (2.5) as 

 
s' s' sm n n m s' s' s

m'||n' m'n' m||n m' |n' n'm' n'm' n'm's nm s m'| n'L A , A L A L LΦ = Φ = Φ − = + . (2.7) 

If we evaluate the new connexion with (2.5) and if we drop the primes, we obtain 

 

s s s s s ss s s s
mn mn mn mn mn m n m n mn m n m n

s2 s s s
nn R n n n mn mn n m mn mn [m n]m

2 2 2
mn R [m n] n R n n |n

A B C F , B b B b b b B , C c *C c c c *C

*C C C F , F F u F u F u , F H F u

H 2 i c , F ,

= + + = − = −

= α = + = + + = +

= α ωσ = α ω σσ σ = σ

. (2.8) 

 The { }mu 0,0,0,1=  are the 4-velocities of the rotating observers. The new quantities 

mn mH , F  are relativistic generalizations of the Coriolis and centrifugal forces of the rigid 

rotation. Using the techniques as known from general relativity, they appear dynamically in 
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the field equations.  For these new field strengths the field equations decouple from the 
Ricci tensor. Using the fourth1 graded derivative for the new quantities 

 
4

s s s s

m||n m|n nm s nm nm nm'A , 'A B CΦ = Φ − Φ = +  (2.9) 

we obtain with ( )mn mn'R 'R 'A=  

 
4

s s r s r

|| s]mn [m n rm sn mn rs'R 2F F F F F 0⋅ ⋅
 + − − =  . (2.10) 

As the rotation is independent of the time, the first term on the right side of 

 
4 444

s s s
n)|| s[m n m n (m n ||m|| s|| s]2F F u 2u F F⋅ ⋅ = + +  (2.11) 

vanishes and we get from (2.10) the set of equations 

 

2 2

3 3

4 4

4

s s

n||m n m ||s s

s s s3

n||m n m n3 m3 ||s s s3

s s s rs

n||m n m n ms ||s s rs

s s
sn || s n

B B B 0, B B B 0

*C *C *C 3H H 0, *C *C *C 3H H 0

F F F H H 0, F F F H H 0

H 2H F 0

+ = + =

+ + = + + =

− + = − + =

− =

. (2.12) 

The last two equations can be written as 

 ( )
4

s s s sr

n ||s n n s s sr nn

1
F J , J 2H F F F H H u

2
= = + −  , (2.13) 

or by use of the total covariant derivative as 

 s
n||sF 0=  . (2.14) 

                                            

1
 For time-independent quantities the fourth graded derivative corresponds to the three dimensional space-

like covariant derivative. 



5 
 

The current is conserved 

 m
||mJ 0= . (2.15) 

From the symmetry properties of the Riemann tensor  

 
r r

[mns] [mns] r [s || mn]R 0, R u 2u 0= = =  (2.16) 

we obtain a second set of equations 

 
4 4

[mn ||s] [mn ||s] [m || n]F 0 H 0, F 0= ⇒ = = . (2.17) 

In symbolic notation we write with mns
ns

1
i H

2
εH �  the above formulae as 

 
2 2div , rot 2( )

div 0, rot 0

= + = ×

= =

F F H H F H

H F
. (2.18) 

 ( ) ( )2 21
div 2 0, 0

2
× = + =

.

F H F H . (2.19) 

For the relativistic case these equations have been investigated by the author in an earlier 
paper [3,4] and for the non-relativistic case by F. Hund [2]. As the similarity to the 
electrodynamics is evident, one also speaks of gravito-magnetism [9,10]. In the last 
decades, many authors have treated this problem.   

Comparing the first equation in (2.18) with Newton’s law div g 4 k= − π µ  we find the 

source of the centrifugal force to be the density of the rotational field energy 

( )2 21

4 k
µ = − +

π
F H .  It is the mass density generated by the relatively rotating universe. 

This mass density is negative and repulsive and its action is very much stronger than the 
action of the distant rotating mass shell as described by H. Thirring [5] and J. Lense and H. 
Thirring [6]. As the velocity of light is a constant of the transformation (2.5), we do not 
suppose that the constancy principle of light is violated in accelerated frames. In [5] we 
have shown that the phase shift in the interferometer on Sagnac’s platform can be 
deduced in full agreement with the principle of constancy. The rotational field strengths 
shorten and lengthen the optical paths of the light beams on the rotating platform. Thus, 
Sagnac’s experiment is the pendant to the Michelson experiment also concerning its 
interpretation. Recently the problem of the constant velocity of light in rotating systems has 
been discussed by E. Minguzzi [7] and E. Minguzzi and A. Macdonald [8]. 
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3. INTRODUCING AN ACCELERATED SYSTEM  

 

For the purpose of studying a freely falling reference system we introduce an 
observer field with a non-constant velocity vs. To provide a better comparison to the 
electrodynamics of moving bodies we perform most of our calculations in a more general 
way but we finally restrict ourselves to an irrotational motion of the system.  To begin with, 
we assume that vs depends on the radial positions of the observers and increases towards 
the center of rotation. Firstly, we describe the physics of the stationary observers in terms 
of the accelerated system. This will be done by a passive Lorentz transformation 

 
21' 1' 4' 4'

1 S 4 S S 1 S S 4 S S SL , L i v , L i v , L , 1 1 v= α = α = − α = α α = − . (3.1) 

The components of the radial tangent vector and the four-velocity of the stationary 
systems in terms of the accelerated observers are  

 { } { }s' S S S s' S S Sm ,0,0, i v , u i v ,0,0,= α − α = α α  (3.2) 

and the partial derivatives 

 1' S 1 4' S S 1, i v∂ = α ∂ ∂ = − α ∂ . (3.3) 

The components of the field strengths read as 

 

{ }

{ }

{ }

m' S 1 S S 1

m' S 1 2 S S 1

m' S 1 2 S S 1

1'3' S 13 2'3' 23 4'3' S S 13

B B , 0, 0, i v B

*C *C ,*C ,0, i v *C

F F , F , 0, i v F

H H , H H , H i v H

= α − α

= α − α

= α − α

= α = = − α

. (3.4) 

There is no doubt that the field equations are invariant under the Lorentz 
transformation: 

 m n
m'n' m'n' mnR L R 0= = . (3.5) 

If we apply (3.1) to (3.5) and if we use the new definitions  
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1

s' ss ' s' s ' s n m s'
m'||n' m'|n' n'm' s' n'm' s m'|n' n'm' n'm's nmL , L L L , A L AΦ = Φ − Φ = =  (3.6) 

we find 

 
1 1

s' s' r ' s '
||m'n' m'n' s' n' ||m' r 'm' s'n' m'n' s'R A A A A A A= − − +  . (3.7) 

The above covariant derivative is the first graded derivative [1] in the ‘freely falling’ system. 
It leaves the autoparallelism of the unit vectors invariant 

 

( )
1

4

s'

m'||n' m'|n' n'm' s '

s' s ' s ' s '

m'||n' m'|n' n'm' n'm' n'm' s' m'|n' n'm' s'

m m L m 0

u u L B C u u L u 0

= − =

= − + + = − =
. (3.8) 

The new quantity L can be written as 

 
s' s' s'

n'm' n' m' n' m' m' S|4'

S

1
L m M m m m M , M 0,0,0, v

v

 
= − =  

 
, (3.9) 

where 4'M   describes the change of the velocity vS measured with the proper time of the 

‘freely falling’ system. The total covariant derivative 

 
1

s'

m'||n' m' ||n' n'm' s'AΦ = Φ − Φ  (3.10) 

is composed of two tensorial parts: the first part is the first graded derivative (3.6) and 
reduces to the ordinary partial derivative only for special reference systems in a similar 
way, as the ordinary covariant derivative in flat space reduces to the partial one, if a 
Cartesian system is chosen. The second part consisting of the connexion coefficients, 
behaves under Lorentz transformations also as a tensor. The connexion coefficients refer 
to an invariant geometrical structure. In our simplified model, these are the curvatures of 

the slices of the sphere2, namely  | B | 1 r, | C | 1 r sin= = ϑ   and the additional structure 

implemented by (3.5). In a gravitational model, as described by the Kerr metric, there is 
one more curvature vector because the physical surface is curved into higher dimensions. 
All these properties of the space are not affected by a passive rotation of the reference 

system in the tangent space. The field equations m'n'R 0=  of the simplified model are 

                                            

2
 In the flat model, we put in by hand this structure; in the gravitational model, the curvatures are a 

consequence of embedding the physical surface in a higher dimensional space. 
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invariant under passive Lorentz transformations. However, the question is, whether the 
subequations (2.12) are invariant too. Inserting (3.4) into (3.7) we find with some algebra 
the same equations (2.12) for the primed system. This demonstrates that an accelerated 
observer can predict the physics of the stationary observer. For the Kerr metric this 
calculations are more tedious, but they will show that a gravitational model is invariant 
under passive Lorentz transformations. Moreover, the model is also invariant with respect 
to the subequations of the field equations.  

 

4. APPLYING AN ACTIVE LORENTZ 
TRANSFORMATION 

We omit the restrictions we have made in the last chapter and assume the velocity of 
the accelerated observers to have an arbitrary direction and to be time-dependent. This 
enables us to compare the theory of an accelerated system in rotating frames with the 
theory of moving bodies in the electrodynamics. The Lorentz transformation reads as3 

 ( )' 4' S ' 4'
S 4 S S 4 SL 1 e e , L i v , L i v , Lβ β β β β

α α α α α= δ + α + = − α = α = α , (4.1) 

where the e’s are the unit vectors in the direction of the observers’ velocities. If we interpret 
(4.1) as an active Lorentz transformation, we have to decompose the field equations by 
using the transformed bein vectors. The components of the 4-velocity of the accelerated 
observers in the stationary reference system and in the accelerated reference system 
respectively are 

 { } { }S
n S S n''u i v , , 'u 0,0,0,1α= − α α =  (4.2)  

We obtain the field strengths m'n' m'h , f  measured by the accelerated observers in 

their own system from the relation 

 

n'
m'n' m'n' [m' n'] m'n' m'

n'
m'n' m'n' [m' n'] m'n' m'

m'n' m'n'

1
f h f 'u , f 'u f

2

1
F H F u , F u F

2

f F

= + =

= + =

=

 . (4.3) 

                                            

3
 Greek indices are running from 1 to 3. 
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h  and f are three-dimensional quantities with respect to the accelerated system but have 
time-like components with respect to the stationary system.  With the help of (4.2) we get  

 

' '

' ' S ' ' '

' '2 '
' S ' S ' ' S ' ' '

1
h H v F

2

f F F v v 2 v H

α β

σ σ σ α β

α ββ
σ σ β σ σ α β

= − α ε

= α − α + α ε

 . (4.4) 

With the relation 

 ( )' S 1 e eβ β
α α α β

 Φ = δ + α − Φ   , (4.5) 

we are able to express the new quantities by the old ones and we are able to decompose 
them into parallel and normal components 

 
S

S

1
,

2

, 2

 
= = α − ×  

 = = α + × 

h H h H v F

f F f F v H

|| |||| |||| |||| ||

|| |||| |||| |||| ||

⊥⊥⊥⊥ ⊥⊥⊥⊥⊥⊥⊥⊥ ⊥⊥⊥⊥  . (4.6) 

These equations exhibit the structure of Minkowski’s electrodynamics of moving bodies. To 
get the field equations for the values measured by the accelerated observers with respect 
to their own system, we insert the first relation of (4.3) into 

 
4

s' s'
m' || s ' m' || s ' m'f 0, f j= =  . (4.7) 

The current is split into 

 S s s
n' n' n' 4' ' ' S 4 4 s 4' s S 4 Sj * j 'u j *j L J i v J , J J u , j j 'u J iJ vβ β

α α β α β
 = + = + α = α − , = =, = =, = =, = =  (4.8) 

or symbolically 

 S Siv J , = α + =
 

j J j J
| | | || | | || | | || | | | ⊥ ⊥⊥ ⊥⊥ ⊥⊥ ⊥ . (4.9) 

Our field equations have contributions from the accelerations  

 { }
4

s'
m' m' m' '||s '

'u 'u a , a a ,0α= − =  (4.10) 
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whereas the total acceleration is 

 s'
m' ||s ' m' m''u 'u f a= − . (4.11) 

The field equations resulting from (4.7) and 

 
4

[m'n' ||s '] [m'n'||s ']f f 0= =  (4.12) 

 
4 444 4

4 44 4 4

' s ' ' s ' s ' s '
'|| ' ||s '||s ''||s ' '|| ' ' ' s '

' 's ' s ' ' '
||s ' || ''|| s ' ' '|| ' ' ' || ' ' '

1 1
h f 'u f 'u f 'u j , f f a j

2 2

1
i h 'u h 'u h 'u f f a 0, h 0

2

β β
α β α α β α α

α ββ β
βσ σ σ β σ β α α β

   − − + = + =
    

   + − + ε + = =
      

 (4.13) 

contain the quantities (h,f) in contrast to Minkowski’s electrodynamics wherein the field 
equations are formulated with (h,F) and (H,f). This mixed representation is called artificial 
by A. Sommerfeld in his textbook [11].  

In a subsequent paper, we will apply these results to the Schwarzschild metric by 
adapting the accelerated system to the radially freely falling reference system. Therefore, 
we hope to be able to study the interaction of the acceleration with the gravity and to gain 
better insight to the related problem of the Kerr metric. 

Acknowledgements: I am indebted to Prof. H.-J. Treder for his kind interest in this work. 



11 
 

 

5. REFERENCES 

 

1. Burghardt, R.; New embedding of the Schwarzschild geometry. I. Exterior solution. 
Report ARG-2001-01 

2. Hund, F.; Zugänge zum Verständnis der Allgemeinen Relativitätstheorie.  
Z. Phys. 124, 742, 1947 

3.  Burghardt, R.; A non-stationary pseudogravitational model.  
The Earth and the Universe. Bremen 1993, p 133 

4. Burghardt, R.; Zur Relativität der Beschleunigung. Ann. d. Phys. 40, 140, 1983 
5. Thirring H.; Über die Wirkung rotierender ferner Massen in der Einsteinschen 

Gravitationstheorie. Phys. Z. 19, 33, 1918 
6. Lense, J., Thirring H.; Über den Einfluss der Eigenrotation der Zentralkörper auf die 

Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. 
Phys. Z. 19, 156, 1918 

7. Minguzzi, E.; Simultaneity and generalized connections in general relativity. 
gr-qc/0204063 

8. Minguzzi, E., Macdonald, A.; Universal one-way light speed from a universal light 
speed over closed paths. gr-qc/0211091 

9. Grøn, Ø, Knudson, H.; Maxwellian approximation to general relativity.  
Eur. J. Phys. 10, 200, 1989 

10. Embacher, F.; Machian effects in general relativity. UWThPh-1988-23 
11. Sommerfeld, A.; Elektrodynamik.  Leipzig, 1961 

 


