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Abstract: The meaning of the curvature parameter is subjected to a rigorous examination 
concerning metrics of some gravity models. The radial part of the line elements must be 
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parameter has the value k 0  in comoving coordinates. 
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1. INTRODUCTION 

 For cosmological models, particularly for FRW models, the curvature parameter k 
was introduced for the classification of the geometry. k is situated in the radial part of the 
metric if the metric is expressed in comoving coordinates. The typical form of such a metric 
is 

2 2 2 2 2

2

2

1
ds dr ' r d dt '

r '
1 k

   


R

. 

We will call it the canonical form. 

For k 1  the geometry is called to be positively curved and the universe closed, for 
k 0  flat and open, for k 1   negatively curved and open. This terminology has been 
transferred to collapsing gravity models by McVittie [1] because the collapse of a stellar 
object is mathematically closely related to the expansion of the universe. However, we 
have reasonable doubts that the curvature parameter could represent the curvature of a 
geometric model. We investigate for several models which interpretation might have the 
quantity  k. The canonical form of the metric plays an essential role. In the following 
sections, we will examine some models considering their spatial curvature properties. 

 

2. EXTERIOR SCHWARZSCHILD SOLUTION, STATIC 

 The Schwarzschild line element in the standard form is 

 2 2 2 2 21 2M
ds dr r d 1 dt

2M r
1

r

 
     

 

 . (2.1) 

It is to be brought into the canonical form. For this we need the radius of curvature of the 
Schwarzschild parabola and an associated quantity R  

 
3 32r r

2 ,
M 2M

   R R  . (2.2) 

The new quantity R  can be geometrically interpreted. If one extends the curvature vector 

of the Schwarzschild parabola to its directrix, the distance R  is excised between the 

directrix and the Schwarzschild parabola. 

The speed of an object which is in free fall in the Schwarzschild field can be 
rewritten with (2.2) in the form 

 
2M r

v
r

   
R

, (2.3) 

whereby 

 r sin R   (2.4) 

 
applies. Thus, the Schwarzschild metric can also be brought into the form of de Sitter 
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2

1
ds dr r d cos dt

cos
    


  (2.5) 

or into the canonical form 

 
2

2 2 2 2 2

2 2

2

1 r
ds dr r d 1 dt

r
1

 
     

 
R

R

. (2.6) 

The spatial part of this metric might suggest that it describes a spherical geometry. 

However, it must be remembered that R  is a function  rR R  and also that the origin of 

R  is not fixed but moves on the directrix of the Schwarzschild parabola. The spatial part of 

(2.6) still describes Flamm's paraboloid. 

If the radial arc element is generally written in the form 

  
2

1 2

2

2

1
dx dr

r
1 k




R

,  (2.7) 

it can be seen that for the Schwarzschild geometry the quantity k takes the value 

 k 1 . (2.8) 

Flamm's paraboloid correctly appears positively curved and as can seen from the 
canonical representation (2.6) of the metric is open. That k 1  in this case describes an 
open model, extending to the infinite, is not covered by the FRW definition of k. We no 
longer want to associate the meaning of k with the curvature of the geometry, but with the 
shape of the metric. We will call k as form parameter of the model. 

 

3. EXTERIOR SCHWARZSCHILD SOLUTION,  
FREE FALL FROM INFINITY 

 

A coordinate transformation of the Schwarzschild metric, which has been derived by 
Lemaître [2], will be treated in relation to the problems addressed by us. One can simplify 
the substitution of Lemaître 

  

2

3
3

2M
1

3 rr 2M r '' t '' , t '' t 2 2Mr 2Mln
2 2M

1
r


 

     
 



 (3.1) 

with 

   
3

r '',t '' r '' t ''
2

 R  

to 

3 2r 2M R . 
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From the Schwarzschild definition v 2M/r   one obtains for the velocity of observers 

falling from the infinite the expression 

 3
r 2M

v    
R R

  (3.2) 

and one has recovered the relations (2.2), (2.3) with the help of the Lemaître 
transformation. 

Differentiating (3.1) and substituting into the standard form of the Schwarzschild 
metric, one obtains the Lemaître metric 

  2 2 2 2 2 2 r
ds dr '' d dt '' , v r '',t ''        K R K

R
. (3.3) 

K  is called scale factor. For the metric that describes a freely falling observer one has 

 k 0 . (3.4) 

Without doubt, the coordinate transformation (3.1) cannot change the geometric 
structure of the model. The falling object moves on a radial curve of Flamm's paraboloid, 
which is positively curved. The Lemaître coordinate system follows the falling observer and 
shrinks toward the event horizon. 

From the line element (3.3) we see that the time-like metric factor is 44g 1 , ie that 

the time-like arc element is flat. For comoving observers coming in free fall from infinity, 
applies the same time at any position r 2M . The proper time of the observer is identical 

with the time coordinate t ''  and agrees with the coordinate time of an observer at rest at 

infinity. A constant timelike metric factor has as a consequence that no gravity acts on the 
observer. This corresponds to the principle of Einstein's elevator. 

From the metric (3.3) we calculate the lateral field quantities with the tetrad 
technology. We refer the interested reader to our presentations in [3]. For the spatial parts 
of these quantities one has 

 ' '

1 1 1
B ,0,0 , C , cot ,0 , ' 1',2',3'

r r r
 

   
       
   

. (3.5) 

In contrast, in the static case one has 

 2 2a a 1
B ,0,0 , C , cot ,0 , a 1 2M r 1 r

r r r
 

   
         
   

R . (3.6) 

While (3.5) are the expressions for a flat geometry, (3.6) is typical of a curved geometry. 
The form of (3.3) and (3.5) seems to indicate that k 0  stands for a flat geometry. We 
want to get to the bottom of the matter.  

If one establishes the matrix i ' i '

i |ix   by differentiation of (3.1) and further reads the 

4-beine from (2.1) and (3.3), one obtains with 
m' im' i '

m i ' i
m

L e e   the matrix of the Lorentz 

transformation 
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 m'

m

i v

1 1 2M
L , , v

1 r2M
1

ri v

  
 
     
 

 
   

, (3.7) 

which describes the transition from the static reference system to the freely falling 

reference system. With m

m' m' mB L B  one obtains 

 
'

1 1
B a ,0,0 ,0,0

r r


   
     
   

. (3.8) 

In this expression the curvature quantity a is still included. It is hidden by the kinematic 
quantity   according to a 1  . It is clear that k 0  cannot be a condition for a flat 

geometry. It is therefore quite justified if we deny k the property to make statements about 
the curvature of a geometry. The quantity k classifies the structure of a metric and 
deserves to be called form parameter of the metric. 

 

4. FREE FALL FROM AN ARBITRARY POSITION 

 The problem treated in the last section can be generalized to the free fall from an 
arbitrary position in the Schwarzschild field. To find the transition to a coordinate system 
that accompanies a freely falling object, one needs the speed v '  of this object. It is not 
known a priori, but can be determined circuitously, by starting from the known velocity v of 

an observer who comes from infinity. In addition, one faces the velocity 0v const.  of an 

observer who is falling from infinity as well. This velocity is measured when the observer 

has reached the position 0r  namely, that position from which the first observer is emittet. 

The two velocities v and 0v  are subtracted relativistically. According to Einsein's law of 

addition of velocities one has 

  
00

0

o

0

2M 2M

r rv v
v ' v ' r, r

1 vv 2M 2M
1

r r

 
        




 . (4.1) 

In a paper [5] we have studied the problem in more detail and have found the 
transformation matrix 

 

2 2
1 1 4 2 2 4 2

1' 4 ' 1' 4 '2 2

2
1' 1' 4 ' 2 4 '

1 4 1 4

' '
v ', i v ', i ' v ' , '

, i, i v ', 1
v '

 
            

 


           

 . (4.2) 

It leads to the line element 

    
2 22 2 2 2 2 2 2

0 0 0 0ds v v dr ' r d 1 vv dt '         (4.3) 



 6 

from which one can read k 0  as well. Little surprisingly, we get the same result as for an 

observer who comes from infinity. 

 

5. THE Rh = ct MODEL 

 

 Melia [9] has proposed a flat model which explains better the observed phenomena 
in the cosmos than the standard model. The cosmic horizon is at that distance from any 
observer, in which the recession velocities of the galaxies have the velocity of light. The 
cosmos expands linearly, thus it does not accelerate. 

Recently we have proposed a cosmological model [10] which we have called 
pressure model. It is based on an exact solution of Einstein's field equations and includes 
pressure and mass density. The model is based on a pseudo-hypersphere, the spatial 

curvature is positive  k 1 . It is noteworthy that this model leads to the same results as 

Melias model, ie to a model with linear unaccelerated expansion. 

Thus, the question arises whether that concordance is accidental, or whether the 
models are identical despite the inconsistencies regarding the curvature of space. We 
have investigated this question.  

Melia primarily realizes his concept in the comoving system. The line element for 
k 0  has the form 

 2 2 2 2 2 2ds dr ' r ' d dt '     K , (5.1) 

whereby the scale factor is proportional to the cosmic time t '  according to the linear 

expansion of the universe. Therefore we put 

 
0

t '
K
R

  (5.2) 

with 0R  as constant factor which can be set to 1 without loss of generality. From the above 

line element we read the 4-bein system 

 
4'1' '2 ' 3

1' 2' 2' 4 'e , e r ' r, e r 'sin r sin , e 1       K K K   (5.3) 

and therefrom calculate the components of the Ricci-rotation coefficients 

 m' m' m'

i 1 i 1 1 i
'U 0,0,0, , B ,0,0, , C , cot ,0,

r r r

     
           
     R R R

 . (5.4) 

However, these quantities are identical with those which we have derived for our 
pressure model. Herewith the field equations yield the stress-energy tensor with the 
pressure and the mass density 

 02 2

1 3
p ,    

R R
  (5.5) 
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and the equation of state 

 
0

1
p

3
   . (5.6) 

All quantities of Melia are identical with those of our pressure model. Therefore it is 
reasonable to assume that the model of Melia is identical with ours and thus positively 
curved and finite. In this case k cannot be interpreted as curvature parameter either. The 
apparently flat structure of the lateral field quantities in (5.4) can be explained in the same 
way as in the previous sections. The cosmos is expanding in free fall. Again, the principle 
of Einstein's elevator applies. 

 

6. THE COSMOLOGICAL MODELS OF THE DE 
SITTER FAMILY 

 The dS family consists of four models, the actual dS model, the model of Lanczos, 
Lanczos-like model and the anti-de Sitter model. 

The line element of de Sitter in its static form is 

 
2

2 2 2 2 2 2 2 2 2 2

22 2

2

1 1 r
ds dr r d cos dt dr r d 1 dt

rcos
1

 
          

  
R

R

 . (6.1) 

From its canonical form can be read  k 1 . The dS cosmos is positively curved and 
therefore closed. It has an embedding. (6.1) is the line element on a pseudo-hyper sphere 
with a constant radius. From Lemaître stems a coordinate transformation which results in 
the line element 

 2 2 2 2 2 2 'ds dr ' r ' d dt ' , e      K K   (6.2) 

which can be interpreted as a metric of an expanding universe. Evidently one has k 0  

and this is what is stated in the literature. The expanding dS cosmos is flat and open. We 
do not believe that the geometric structure of a model can be changed by a coordinate 
transformation. We tend to believe that they are two different universes, which are 
determined by different slices on the pseudo-hyper sphere with constant radius. In this 
light the Lemaître transformation is only a model generating mathematical method. The 

two coordinate systems  r ',t '  and  r,t  belong to different models and cannot be 

interpreted as systems which comove or which do not comove with the expansion. 

But we have to consider that the coordinate transformation of Lemaître is 
accompanied by a Lorentz transformation, which apparently is often overlooked. It is not 
entirely clear why a locally operating Lorentz transformation should have global 
consequences, such as the redeployment of slices of an unmodifiable pseudo-hyper 
sphere. Therefore, we prefer a different interpretation of the Lemaître transformation. Not 
space is expanding, but the coordinate system. Observers, associated with this coordinate 
system are moving from an arbitrary point into every direction. In this case, k cannot be 
associated with the curvature of space, but with the form parameter of the metric. 
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The motion occurs in free fall. This has the consequence that different forces act on 
the comoving and on the non-comoving observers. The relation of the forces can be 
calculated via the inhomogeneous transformation law of the Ricci-rotation coefficients 

 m

m' m' m m''U L U 'L  . (6.3) 

In the non-comoving system U has only one component, the force in the radial 
direction.  

  m 1U U ,0,0,0 . (6.4) 

However, in the comoving system one has 

  m' 4''U 0,0,0,'U . (6.5) 

As required by the principle of Einstein's elevator, no radial forces act on the observer. 

However, the tidal force 4 ''U  emerges. It is responsible for the expansion of a volume 

element into the radial direction. The lateral field quantities of dS cosmos take the flat form 
(3.8) in the expanding system just as they do in the Schwarzschild model. However, for 
them applies that the geometric quantity a cos  is repealed by the kinematic quantity 

21 1 v   . 

The line element of the Lanczos cosmos has in the non-comoving case with 

0r sin R  the form 

 
2

2 2 2 2 2 2 2 2 2 2

22 2

0
2

0

1 1 r
ds dr r d cos dt dr r d 1 dt

rcos
1

 
          

  
R

R

 (6.6) 

and in non-comoving coordinates with 0r ' sin ' R  

 2 2 2 2 2 2 2 2 2 2 2

22

2

0

1 1
ds dr ' r ' d dt ' dr ' r ' d dt '

r 'cos '
1

 
 

 
         

     
 

K K

R

. (6.7) 

Therein cosi ' ch '   K  is the scale factor and on the basis of 0t ' ' R  a time-

dependent quantity  and 0R  a constant. With 0R K R  can (6.7) be written in the form 

 

 2 2 2 2 2 2 2 2

0ds d ' sin 'd di '      R R R . (6.8) 

It stands for a pseudo-hyper-sphere with time-dependent radius R . From the canonical 

form of the metric one reads k 1  for both the static form and for the expanding form of the 
model as well. Here the meaning of k would be justified as curvature parameter, but also 
alike as the form parameter of the metric. 

For the Lanczos-like cosmos applies in the non-comoving case the line element 
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  
2

2 2 2 2 2 2 2 2 2 2

22 2

0
2

0

1 1 r
ds dr r d 1 sh dt dr r d 1 dt

r1 sh
1

 
           

   
R

R

, (6.9) 

and for the comoving observer 

 2 2 2 2 2 2 2 2 2 2 2

22

2

0

1 1
ds dr ' r ' d dt ' dr ' r ' d dt '

r '1 sh '
1

 
 

 
         

      
 

K K

R

. (6.10) 

Remarkably, the universe is for the static observers positively curved and finite 

 k 1 . For the observer who participates in the expansion negatively curved and open 

 k 1  . The first observer lives in a universe with a finite number of stars, the second 

observer is in an infinite universe with infinitely many stars. The Lanczos-like universe is 
contradictory and cannot be the basis for a physically suitable model. 

The anti-de Sitter cosmos has in non-comoving coordinates the line element 

 
2

2 2 2 2 2 2 2 2 2 2

22 2

0
2

0

1 1 r
ds dr r d ch dt dr r d 1 dt

rch
1

 
          

  
R

R

  (6.11) 

and in comoving coordinates 

 2 2 2 2 2 2 2 2 2 2 2

22

2

0

1 1
ds dr ' r ' d dt ' dr ' r ' d dt '

r 'ch '
1

 
 

 
         

     
 

K K

R

. (6.12) 

In both cases is  k 1  . The universe is negatively curved for all observers and open. 

 

7. COLLAPSING MODELS 

 The classic collapsing gravity models include the model of Oppenheimer and 
Snyder [6] and the models of McVittie [1]. McVittie has undertaken the FRW classification 
for the curvature of models from cosmology to gravitational theory. Thus, the model k 0  

is ident with the one of OS, k 1  was later rediscovered by Weinberg [7] and discussed by 
him in detail. 

The model of OS describes a star which initially filled the infinite universe and had 
vanishing mass density. The star collapses in free fall, falls through the event horizon and 
shrinks to a point with infinitely high mass density and space curvature. 

The OS-metric in comoving coordinates is 
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 2 2 2 2 2 2ds dr ' r ' d dt '     K   (7.1) 

with 

 

2

3 g

g

g

2r '3
r r ', 1 t ' , '

' M

 
     

  

K K  . (7.2) 

Therein gr '  is the comoving coordinate on the surface of the star, ie, at the boundary 

surface between of the interior OS solution and the exterior Schwarzschild solution. The 
OS-metric in non-comoving coordinates has the form 

 2 2 2 2 2

442

2

g

1
ds dr r d g dit

r
1

   


R

, (7.3) 

whereby for 44g  is given a somewhat complicated expression by OS. (7.1) is of type k 0  

and (7.3) of type k 1 . The stellar object of the OS model collapses in free fall. The 
geometry of the comoving observer appears to him flat, but is a spherical cap according to 
(7.3) and thus positively curved. It should be noted that in the OS model the metric of the 
stellar object merges into the exterior Schwarzschild solution at the boundary surface 
between the inner and outer regions, but the first derivatives of the metrics do not match. 

In the model of McVittie-Weinberg the star does not collapse from the infinite but 
from a finite position. The metric in comoving coordinates is 

 2 2 2 2 2 2

2

2

0

1
ds dr ' r ' d dt '

r '
1

 
 
    
 
 

 

K

R

  (7.4) 

and in non-comoving coordinates 

 2 2 2 2 2

442

2

1
ds dr r d g dit

r
1

   


R

. (7.5) 

For 44g  Weinberg also gives a complicated expression but closer working through the 

theory leads to contradictions. From (7.4) one can read 4' 4 'g 1 . However, such an 

approach is only valid for a collapse from the infinite and not for a collapse from an 
arbitrary position. Both line elements have canonical forms. From them one takes k 1 . 
The 3-dimensional space is positively curved. It is a spherical cap. 

In [8] we have extended the interior Schwarzschild solution to a collapsing model. A 
cap of a sphere with k 1  slides down Flamm's paraboloid. Since we have largely omitted 
the coordinate method, the k-problem does not occur in this model. 
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8. CONCLUSIONS 

 

We have examined several gravity models, static ones with freely falling observers, 
collapsing and expanding ones with respect to their curvature properties. We have found 
that the FRW classification by means of the quantity k  interpreted as curvature parameter 
is not reliable. In particular, k 0  does not mean that the spatial part of the model is flat. 

k 0  rather suggests that a motion takes place in free fall and that freely falling observers 

are not subjected to forces. In particular, we believe that the hR ct  model of Melia [9, 10], 

which claims to be k 0 , is not flat, but is positively curved. We have obtained results, 

which we present in a table: 

 

model comoving non-comoving geometry 

dS k 0   k 1  sphere const.R  

Lanczos k 1  k 1  sphere const.R  

Lanczos-like k 1   k 1   pseudo-sphere const.R  

AdS k 1   k 1   pseudo-sphere const.R  

Melia k 0     -- flat 

Burghardt k 0  k 1  sphere  tR R  

Friedman k 1,0, 1      -- sphere, flat, pseudo-sphere 

OS k 0  k 1  cap of a sphere 

Weinberg k 1  k 1  cap of a sphere 

SS  k 0  k 1  paraboloid 
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