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1. INTRODUCTION 

Since Oppenheimer and Snyder [1], inspired by an expanding cosmological model 
of Tolman, in 1939 first proposed a model for a collapsing star, many authors have adopted 
this problem. Among the many suggestions are only a few exact solutions of Einstein's 
field equations. The reason is that the Einstein field equations are underdetermining and 
although the conservation laws have been consulted there are not enough equations 
available to determine the metric coefficients and the physical quantities of the matter 
configuration. 

Therefore we do not try to solve the Einstein field equations, but we have numerous 
conjectures and make some assumptions. Then we try to assemble them all hoping to 
obtain a suitable model for the collapse of a star: 

i. We rely on geometric ideas which have proven for the exterior and interior 
Schwarzschild solutions. We interpret the space-like part of the interior solution 
as the cap of a sphere, the space-like part of the exterior solution as Flamm's 
paraboloid. 

ii. We consider the time-like part of the metric to be an element of a double-
surface. This we have discussed in [2] in detail, but here we will indicate this only 
briefly. 

iii. The two solutions, the interior and the exterior, are embeddable into a 5-
dimensional flat space, but six variables are required, two of them lie in one and 
the same dimension. Thus, the theorems of Kasner and Eisenhart are not 
violated. 

iv. The methods of embedding provide strong support for the design of the model. 
The fact that this is not an academic exercise has been confirmed by us in the 
discovery of new interior solutions for the models by Kerr, Kerr-Newman, NUT, 
and Reissner-Nordström [2]. 

v. The complete geometry consists of a spherical cap which slides down on 
Flamm's paraboloid during the collapse. The exterior Schwarzschild geometry 
remains unchanged according to Birkhoff's theorem. The collapse causes no 
change in the exterior gravitational field. Above all it produces no gravitational 
waves. 

vi. We perform all calculations by using the method of tetrads. It will prove to be 
very advantageous for constructing a collapsing model. The Ricci-rotation 
coefficients guarantee that we will have direct access to the physical and 
geometrical quantities. 

vii. The question of the linking condition on the boundary surface of the interior and 
exterior solutions should be clarified. Israel [3], O'Brien and Synge [4], Robson 
[5], Bonnor and Vickers [6], Nariai [7], and Lichnerowicz [8] extensively have 
written on this subject. We want to emphasize that we have to approach to this 
problem carefully. One has to match a time-dependent model to a static one. At 
any given moment t const.  the metric of the interior solution at the boundary 
should match the exterior one, ie, the two geometries should be connected. 
Furthermore, the first derivatives of the metric should match, ie the two 
geometries should have common tangents at the boundary surface. In the 
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present case this can only mean that the spherical cap and Flamm's paraboloid 
have a common cutting tangent at the boundary surface. Expressions which do 
not describe the basic geometry, but the change of geometry, ie the collapse, 
cannot be taken into consideration with respect to the linking, by any means. 
That these expressions can be problematic shows us a look at historical studies. 
Although the metrics of the model of Oppenheimer and Snyder match, their 
derivatives do not. Nariai and Tomita [9, 10] are of opinion that the interior OS 
solution does not match the exterior Schwarzschild solution and they replace the 
exterior Schwarzschild solution by a more complicated one while they maintain 
the interior OS solution. They have attempted to incorporate into the matching 
also the dynamic quantities which have their origin in the collapse. This 
presupposes that there is a surface which supports the dynamic properties of 
the model. We believe that the theory of surfaces does not provide in general 
such properties. 

viii.  Accordingly, there is no 'collapsing metric', ie there is no line whose element can 

be written down. There is in general no surface c  that geometrically describes 

the collapse, ie a graphic surface or an abstract Riemannian manifold on which 
one could draw such a line. A look at Fig. 3.1 shows that the model can be 
completely described by the inner surface and the outer surface of the whole 
Schwarzschild model. There is no global co-ordinate system that could cover 

such a surface c . The physical and geometrical quantities are presented in a 

reference system using tetrads. We will use two preferred reference systems. 
One that is linked to an observer who comoves with the collapse and one that 
does not comove. Both systems are connected by a Lorentz transformation with 
non-constant velocity parameters. 

ix. For the reasons mentioned above, the allocation of a common co-ordinate 
system, or the transition from the comoving to the non-comoving co-ordinate 
system respectively, is problematic. Oppenheimer and Snyder were there partly 
successful. McVittie [11, 12] gets stuck half way. For the transformation of the 
time Weinberg [13] writes down an integral whose solution, however, he does 
not specify. Many authors do not lay a hand on this problem. 

x. The collapsing solution is based on the static interior Schwarzschild solution 
taking into account the pressure inside the matter. The pressure and the mass 
density are time-dependent. The stellar object cannot be interpreted as an 
incompressible homogeneous fluid sphere any longer. 

xi. Pressure and density of matter should never be infinitely high. The stellar object 
should not shrink to a point and the curvature of space cannot be infinitely high.  
As final state no singularity should emerge. 

xii. The static model has a horizon. At a relatively small radius of the object the 
pressure at its center would be infinite. Further, after drilling a hole through the 
center of the star we make a body oscillate through it. If the object took a certain 
minimal radius, the body would reach the velocity of light falling through the 
center of the star [14]. We demand that this inner horizon specifies the minimum 
extension of the collapsing star. 

All of that we put together into a toolbox, from which we take out elements as 
required. 
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2. THE INTERIOR SCHWARZSCHILD SOLUTION 

Since we intend to create a collapsing model based on the static interior 
Schwarzschild solution, we are arranging it formally in such a way that an extension is 
possible. We work out essential parts for the collapse in greater detail and we focus on the 
geometrical background of the model. This paves the way for us to modify the model so 
that it can describe a collapse. 

The interested reader is supported with numerous detailed calculations in [15]. A 
more detailed description of the interior solution can be found in [2]. The interior 
Schwarzschild solution is based on the seed metric 

 2 2 2 2 2 2 2 2 2 2 2 2

R R R g R Rds dr r d r sin d a dt , a 1 r , 1 a           R . (2.1) 

Herein g const.R  is the radius of the spherical cap which is used to describe the 

spatial part of the model and 

 gr sin R   (2.2) 

the radial variable in the 5-dimensional flat embedding space,   the polar angle which is 

simultaneously the angle of ascent of the spherical cap. 

Of the quantity 

 R

g

r
v sin    

R
  (2.3) 

we frequently make use later on. From 2 2

R Ra v 1   immediately results Ra cos  . Thus, 

the seed metric takes the form 

 2 2 2 2 2 2 2 2 2

2

1
ds dr r d r sin d cos dt

cos
       


  (2.4) 

and formally corresponds to the de Sitter metric. However, it does not describe a spherical 
space, but a spherical cap. The connection between the tetrad differentials and the 

coordinate differentials is established with 
mm i

idx e dx , whereby is  idx dr,d ,d ,idt   . 

From (2.1) we read the 4-bein system 

 
1 2 43

1 R 2 3 4 Re , e r, e r sin , e a        (2.5) 

and we calculate the Ricci-rotation coefficients 

 
t tss i sr i sr i

mn i mt i n t i
[n|m] [n|r ] [m|r ]

A e e g g e e g g e e   . (2.6) 

The indices (m, n, ...) number the 4-bein, the (i) are coordinates indices. We prefer to 

present the variables of the model in the tetrad system ( i

m i
m
e   ). 

We decompose the Ricci-rotation coefficients into 

 s s s s

mn mn mn mn
ˆA B C U    . (2.7) 

With the following unit vectors 
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      m m mb 0,1,0,0 , c 0,0,1,0 , u 0,0,0,1     (2.8) 

we write 

 s s s s s s s s s

mn m n m n mn m n m n mn m n m n
ˆ ˆ ˆB b B b b b B , C c C c c c C , U u U u u u U      .  (2.9) 

We calculate the two lateral field quantities B and C and the acceleration Û  from (2.6)  
with 

 
42 3 32 3 3 4

1 2 1 3 2 3 1 4
2|1 3 |1 3 |2 4 |1

ˆB e e , C e e , C e e , U e e         

using 

 
1 R 2 3 4

R

1 1 1
a , , ,

r r r sin a i t

   
       

    
 . 

Finally we obtain [15 #1 - #3] 

 R R
m m m R R

g

a a 1 1ˆB ,0,0,0 , C , cot ,0,0 , U v ,0,0,0
r r r

      
         
      R

.  (2.10) 

Thus, we have derived the field quantities of the seed metric and also explained the 
notation. 

We realize that the seed metric is too simple. The acceleration is directed outwards 
and does not match the corresponding exterior Schwarzschild value. Nevertheless, we 
calculate the Ricci and the curvature scalar, because the gained structures are retained in 
the transition to both the genuine interior Schwarzschild model and the collapsing model 
as well. From 

 s s r s r

mn mn |s n|m rm sn mn s n rnR A A A A A A , A A       (2.11) 

and (2.7), (2.9) we obtain with [15 #7] 

 

1

2 2

3 3

1 2 3

s s

mn ||s s m n

s s

n||m n m n m ||s s

s s

n||m n m n m ||s s

s s s s s s

||s s ||s s ||s s

ˆ ˆ ˆR U U U h

B B B b b B B B

C C C c c C C C

1 ˆ ˆ ˆR U U U B B B C C C
2

 
  

  

   
   
      

   
   
      

    
      

         

 , (2.12) 

whereby the graded derivatives [2] 

  
1 2 3

s s s

n||m n|m n||m n|m mn s n||m n|m mn s mn s
ˆ ˆ ˆ ˆU U , B B U B , C C U C B C        (2.13) 

prove to be highly advantageous and are almost mandatory for understanding the 
structures of the model. Therein is 

 mnh diag(1,0,0,1)   (2.14) 

a submatrix of the tetrad metric  mng diag 1,1,1,1 . For later processing we note the 

subequation of the Ricci [15 # 6] 
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1

s s

||s s 2

g

1ˆ ˆ ˆU U U  
R

 . (2.15) 

The entire Einstein tensor is calculated by using [15 # 1 - # 5]. 

We manage the transition to the genuine interior Schwarzschild metric with the 

projector s

mP  which has only the few components 

  1 2 3 4 gR
1 2 3 4 T R R

T

a1 1
1, , a 3a a

2 a 2
       P P P P P, P , (2.16) 

different from 0. Therein is g

Ra  the value of 
Ra  on the surface of the star. If one matches 

the cap of the sphere to Flamm's paraboloid the relation 

 
3

g g

2r
2 ,

M
   R   (2.17) 

has to apply. 

 is the radius of curvature of the Schwarzschild parabola, g  its value at the 

surface of the star. Thus, with 

 

3

g

g

r

2M
R   (2.18) 

one has made accessible the relation between the radius of the spherical cap and the 

position gr  of the star's surface in the embedding space. The geometric relations (2.17) are 

shown graphically in [2]. Obviously, the projector (2.16) operates effectively only on the 
fourth components of the quantities. If we from now on consistently use hats for the 
quantities of the seed metric, we have 

      P P Pm 1 m s s r s r

s m m s mn m sn
ˆˆˆdx dx , , A A . (2.19) 

To understand the first operation in (2.19) we replace the time differential in the line 
element (2.1) by 

 g
ˆidt di  R . (2.20) 

We interpret the time interval as arc element on a pseudo-circle and we let operate the 
projector on it 

    4 1 4 4 4T
4 R g T g g T

R

a
ˆdx dx 2 a di a 2 di , idt 2 di , dx a idt

a

         P R R R  

and we get the interior Schwarzschild line element 

 2 2 2 2 2 2 2 2 2 2

R Tds dr r d r sin d a dt         . (2.21) 

If one takes into account (2.18) and 
g g

T R ga a 1 2M r   , then this line element 

related to the surface of the star coincides with the one of the exterior field. If we write the 
time-like part as  

 4

T g g g gdx a 2 di 3 cos cos di      R R R  
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we realize that the time which we read from our clock is the real accompanying number of 
a rotation process through an imaginary angle i . 

The projector technology gets its actual entitlement only within a 5-dimensional 
embedding theory [2]. However, here we have shown it in outline, because it plays a useful 
role in the remodeling of the static model to a collapsing model. 

The third operation (2.19) affects only the quantity Û  

 s r s

mn m rn 1 1
ˆ ˆU U , U U P P . (2.22) 

A simple calculation [15 # 9] shows that now holds 

 
2 3

n||m n m n||m n m2 2

g g

1 1

0 1

0 0

1 1
B B B , C C C

   
   
   
   
   
   
   

     

P P
R R

 , (2.23) 

because now the quantity s

mnU  containing P  occurs in the graded derivative. With [15 # 8] 

one calculates for sU  

 
1

s s

||s s 2

g

U U U  
P
R

 . (2.24) 

The field quantity 1E  in 

         


P
4 44 R

1 41 4 T|1 1 1 1
4|1

T T g

v1 1ˆU A e e a E , E U
a a

 

is the gravitational force inside the star, is directed inwards, and matches the 

Schwarzschild term 1 R R

1
E v 


 on the surface [2].  

If one removes the hats from (2.12), one has the structure of the Einstein tensor of 
the Schwarzschild model and with 

  mn mn 0 m nT pg p u u      (2.25) 

gains the expressions for the matter configuration 

      
g g

T T
0 0 02 2 2

g g T g T

a a1 3 3 2
p 1 2 , , 1 , p 1

2 a a
             P P P

R R R
  (2.26) 

and finally the equation of state 

 
g

T
0

T

a
p 1

a

 
   
 

. (2.27) 

The relations (2.26) are applied to the collapsing model. The pressure can also be 
written as 

 
g

2

g g

cos cos3
p

3cos cos

  
  

  R
. 
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From (2.2) one obtains 0   for r 0 . Thus, in the center of the star  0   is 

g

c 2

g g

1 cos3
p

3cos 1

 
 

 R
. 

For 
gcos 1 3   the pressure in the center of the star is infinite. If one makes use of this in 

(2.3) and (2.18), one can see that a star cannot be arbitrarily small. In dependence on its 
mass its radial coordinate in the embedding space must be 

 
h

9
r M

4
 . (2.28) 

This is of considerable importance for the collapse. We expect that a star can shrink only 

close to this minimum value. This is particularly interesting because 
hr  is above the event 

horizon of the exterior solution. 

For later use, we calculate from (2.16) 

    P
P |1 R|1 T|1 1 1

R T

1 1 1 ˆa a U U
a a

 

and with (2.22) 

  |1 11 U P P . (2.29) 

Thus, we have worked out all the basic relations and we have brought the Schwarzschild 
model into a form which allows us to extend the interior Schwarzschild solution in such a 
way that a collapse of a simple matter configuration can be described. 
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3. COLLAPSE, COMOVING OBSERVER SYSTEM 

 After the arrangements in the last section, we are able to reflect, how the inner part 
of the complete Schwarzschild solution can be related to a collapse. We let the spherical 
cap, which represents geometrically the region of the interior solution, slide down the 
Schwarzschild parabola. 

 

Fig. 3.1 

Evidently, thereby the radius of the spherical cap changes. Thus, gR  will be a time-

dependent variable but will not change on the spherical cap. Likewise, the Schwarzschild 
parabola remains unchanged according to Birkhoff's theorem. It governs the course of the 
collapse by its shape. Therefore the quantity 

 
1' 4 ' g|4 '

g

1
0, F F R

R
  (3.1) 

enters into the Einstein field equations. Primed indices indicate the comoving frame of 
reference. If we further make an ansatz for the collapse velocity, we are able to set up a 
Lorentz transformation which establishes the connection between comoving and non-
comoving systems.  

Since at any time of the collapse the state of the star is a snapshot of the interior 
Schwarzschild solution, which can be described by the structures explained in Sec. 2, we 
can always have access to the relations of this solution. 

We note a relation known from the static model for our toolbox and complement it 
by an analogous one for the comoving system: 

 R I
|1 |4 |1' |4 '

a a1 1
r , r 0, r ' , r ' 0

r r r ' r
      (3.2)  

The auxiliary variable r '  has the range of values [ g0,...,r ' ]. 
g

r '  is the value of  r '  at the 

surface of the star. r '  is referred to in the literature as comoving radial coordinate. But we 
do not make use of this interpretation, because we do not use or we are not able to use a 
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coordinate system for the collapsing model. For this we have given reasons in detail 
above. 

In our toolbox we place the following relations: 

 

32
g2

R R g2

g g

32
g2

I I 02

0 0

rr r
a 1 , v ,

2M

r 'r ' r '
a 1 , v ,

2M

    

    

R
R R

R
R R

 . (3.3) 

At the beginning of the collapse we have g gr r '  and g 0R R .  We also demand 

that the two velocities Rv , Iv  defined in (3.3) are composed to the collapse velocity 

according to Einstein's addition law of velocities 

 R I
C

R I

v v
v

1 v v





. (3.4) 

With this we have set up the collapsing Schwarzschild model. The rest is tedious 
handwork. 

The ansatz (3.3), (3.4) should be compared with historical papers. For Iv 0  one 

obtains the model of Oppenheimer and Snyder. For the surface of the OS-star one has 
g

R g g gv r 2M r   R . The pressure-free OS-star collapses in free fall from infinity. A 

combination of the two velocities other than (3.4), which violates the Einstein addition law 
of velocities, leads to the models of McVittie and Weinberg. 

With (3.4) we are able to set up a Lorentz transformation and the accompanying 
Lorentz relations. We need a Lorentz transformation which connects a system which 
participates in the collapse and another which remains at rest relative to an observer 
system in the outer region. 

 

     

     

1 4 1 4

1' C 1' C C 4 ' C C 4 ' C

C I R CR I
C R I

R I C I R C

C R I R I R C I C I I C R C R

C C R I R I R R C I C I I I R C R C

L , L i v , L i v , L

v v v vv v
v , v , v

1 v v 1 v v 1 v v

1 v v , 1 v v , 1 v v

v v v , v v v , v v v

        

 
  

  

              

              

 . (3.5) 

With the help of such a Lorentz transformation we can calculate the field quantities in the 
comoving system. Those field quantities, as set forth above, are components of the Ricci-
rotation coefficients. Therefore we have to start from the inhomogeneous transformation 
law of the Ricci-rotation coefficients 

 s' m n s' s s' s

m'n' m'n's mn s n'|m''A L A L L  . (3.6) 
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The Ricci-rotation coefficients themselves are tensors. They describe the curvatures of the 
normal and oblique cuts through that surface, which we take as a basis of the theory. By 
the transformation 

s' m n s' s

m'n' m'n's mnA L A  

the curvatures of the surface are not altered, but only adjusted to the point of view of a 
new observer. The above inhomogeneous transformation law has the meaning that a new 
object 'A is assigned to the geometric object A. We call the second term in (3.6) Lorentz 
term and write it in short as 

 s' s ' s

m'n' s n'|m''L L L . (3.7) 

Thus, we end up in 

 s' s ' s '

m'n' m'n' m'n''A A 'L  . (3.8) 

However, concerning the collapse, the process will be somewhat more complex: we go 
back to the seed metric, we calculate the Lorentz term, we transform to a comoving 
system, we project to Schwarzschild, and we switch on the collapse by giving up the 

constraint g const.R . Taken together in a formula this gives 

 s' r ' m n s' s s' r ' s s ' s ' r ' s '

m'n' m' r 'n' s mn r 'n' m' r 'n' m'n' m'n' m' r 'n'
ˆ ˆ ˆ ˆ'A L A 'L A 'L , 'L 'L     

 
P P P . (3.9) 

We now expect the field quantities to have a fourth, time-like component in this system. It 
is easy to see that the lateral field quantities contained in the Ricci-rotation coefficients 
transform homogeneously 

   
             

   

m mR R R R
m' m' m C C C m' m' m C C C

a a a a1
B L B ,0,0, i v , C L C , cot ,0, i v

r r r r r
,  (3.10) 

but the quantities U transform inhomogeneously. We put the U-parts of the system into the 
form 

 s' s' s ' s ' s ' s '

m'n' m' n' m'n' m'n' m' n' m'n'
ˆ ˆ ˆU h U h U , 'U h 'U h 'U    .  (3.11) 

First we get with [15 # 13] 

      
Rm' C C C R R

g

1
Û ,0,0, i v v  (3.12) 

and after the P -operation 
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4' 4' 1' 1'

1' 4 ' 4 '1' 4 ' 1' 1' 4 '
ˆ ˆU A , U A P P , 

  m' 1' 4 '
ˆ ˆU U ,0,0,U P . (3.13) 

At this stage of calculations the primed system is a moving system from which the 
static Schwarzschild metric is observed and is not connected to the collapse. Now the 
Lorentz term is to be calculated. From [15 # 13] we take 

 4' 4 ' s 2 1' 2

1' 4 '1' s 1'|4 ' C C|4' 4 ' 1' 4 ' C C|1'
ˆ ˆ ˆ ˆ'L 'L L L i v 'L 'L i v          

and we write 

 s' s ' s '

m'n' m' n' m'n'
ˆ ˆ ˆ'L h 'L h 'L  . (3.14) 

The terms ˆ'L  are calculated [15 # 14] and the P -operation is executed. With the auxiliary 

variables 

 

   

    

m' C C C R m' I I

g

m' C C R m' I I I m' m'

g g

1 1
G i v ,0,0, i , l 0,0,0,1 i v

r

1 i ˆf 1,0,0,0 1 v , g i v ,0,0, U G

 
       

 
 

         

R

P
R R

  (3.15) 

we finally obtain 

  s' s' s '

m'n' m' n' m'n' m' m' m' m''L h 'L h 'L , 'L G l f      , (3.16) 

wherein the quantity f is created by the P -operation. This reduces the inhomogeneous 

transformation law of the U-quantities to a vector equation [15 # 15] 

 m' m' m' m' I I C C R

g

1 1
'U U 'L , 'U v ,0,0, i v a

r

  
      

  

P
R

, (3.17) 

in which the primes ahead of the kernel indicate a variable of the collapsing system. For 
the derivation of (3.17) we have used the Lorentz relations (3.5). We have implemented 
the collapse by considering the field quantities to be a function of time and by demanding 
that the primed reference system is connected to the collapse. 

This is where the problem outlined in item (viii) and (ix) of the Introduction should be 

illuminated. If the quantity m'U  can be derived from the metric coefficients of a line element 

it can be represented as the gradient of a potential. Thus, m''U  can only be a gradient, if 

m''L  can also be brought into gradient form. However, this is in general not the case and is 

not the case in the present model either. The quantities cannot be based on a 4-bein 
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system in such a way that its vectors are tangent to a comoving coordinate system. This in 
turn, makes the existence of a comoving coordinate system unlikely. 

After looking at (3.10) and (3.17) reveals that one has 

4' 4 ' 4 ''U B C   . 

From 

 m' m' m'

||m' m' 4' 4 ' 4 ''u 'A 'u 'U B C , 'u 0,0,0,1      

we conclude that the contraction of a volume element is equal in all three directions. It still 
lacks the quantity mentioned in (3.1). It can be deduced from the field equations. However, 
we use the conservation law. The stress-energy tensor and its components can be taken 
over unchanged from the static model (2.25), provided that the indices will be primed. With 
[15 # 16] one gains 

     0|4 ' 0 4 ' 4 ' 4 ' 0 4 'p 'U B C 3 p 'U        . 

On the other hand (2.26), second equation, gives 

0|4 ' 0 4'2    F  

and with the last two relations (2.26) 

     R
4' 4 ' C C

a
1 'U i v 1

r
     F P P . (3.18) 

The conservation law of the comoving system [15 # 17] is completely treated with 

    m'n'

||n ' |1' 0 1' 0|4 ' 0 4 'T 0, p p 'U , 3 p 'U       . (3.19) 

The quantity 4 'F  just derived enters into numerous calculations. The interested reader 

should follow the calculations [15 # 18] which allow a more direct derivation of the 
quantities 'L. Since we did not obtain the field quantities by integration of the field 
equations, but by extending the static solution with the help of our toolbox, we now have to 
examine whether the field equations are satisfied with these field quantities. If we derive 
some auxiliary relations [15 # 18] we finally obtain by use of the graded derivatives [15 # 
23, # 24] 
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  

 

2 3

2 2

3 3

s ' s ' s '

m ' ||n ' m ' |n ' n 'm ' s ' m '||n ' m ' |n ' n 'm ' s ' n 'm ' s '

s ' s '

m ' ||n ' m ' n ' ||s ' s '2 2

g g

s ' S '

m'||n ' m ' n ' || s ' s '2 2

g g

1

0

0

1

1

0

B B 'U B , C C 'U C B C

1 1
B B B , B B B 1

1 1
C C C , C C C 2

    

 
 
       
 
 
 

 
 
       
 
 
 

P

P

P
R R

P
R R

. (3.20) 

The verification of the 'U-equation is much more complex. We take from (3.17) the 
first relation at hand and we differentiate [15 # 20 - # 22]. It turns out that the U-part of the 
model is form-invariant 

 s ' s '

|s ' s ' 2

g

'U 'U 'U  
P
R

 . (3.21) 

For the calculation of this expression we have made use of the relation 

 |1' 1'1 'U P P . Since there is no primed coordinate system, the relation cannot be 

obtained by direct differentiation, but must be recalculated via the static system. This gives 
the directly verifiable relation (2.29). 

We can take over the structure of the field equations from (2.12), if we remove the 
hats and equip the kernels and indices with primes. If we substitute the calculated 
expressions of the subequations [15 # 25, # 26], the field equations are satisfied. 

 

4. NON-COMOVING OBSERVER SYSTEM 

 The model is only reasonable, if one succeeds in representing the field quantities in 
a non-comoving system and in resolving the field equations herewith. Having recalculated 
some auxiliary variables [15 # 18], we also find the Lorentz term 

    

    

s s s ' m'

mn s ' n|m m m m m m m m'

m R m C C C I I

g

m C C C C C R m R R R m m

g g

L L L , L G l f , L L 'L

1 1
G 0,0,0,1 i , l i v ,0,0, i v

r

1 i ˆf ,0,0,i v 1 v , g i v ,0,0, U G

     

 
        

 
 

           

R

P
R R

 . (4.1) 

With this we can calculate the inhomogeneously transforming U-quantities [15 # 27]. We 
realize that the non-comoving system is not identical with the static system, because we 

have not dismissed the condition g const.R . We perform the following operations 
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 m' m' m'

m m m' m m m' m m m' mB L B , C L C , U L 'U L     . (4.2) 

The lateral quantities take the static form. However, for the quantity U  

 2 2 2 2 m'

m m R R m m R R m m m m'
ˆU U v E v , L     P F F F F  (4.3) 

applies.  

The first term is the Schwarzschild gravity inside the star, the second the 
acceleration of the particles in the interior which is caused by the collapse. It can be seen 
that the expression only goes over into the static one, if we switch off the collapse, thus if 

we put g mconst., ( 0) R F .  The U-equation again is form-invariant [15 # 28, # 29] 

 
1

s s

||s s 2

g

U U U  
P
R

 . (4.4) 

In contrast, for the B and C equations we get with [15 # 30] 

 

2 3

2

3

2

s s s

m ||n m |n nm s m ||n m |n nm' s nm s

1 1 1 4

m ||n m n 2

g

4 1 1 1

1 1 1 4

m ||n m n 2

g

4 1 1 1

s s

|| s

B B U B , C C U C B C

ˆ ˆU U1

0 01
B B B

0 0

ˆ ˆU U

ˆ ˆU U1

1 01
C C C

0 0

ˆ ˆU U

B B

    

   
  
        
  
    

   
  
        
  
    



F F

R

P F F

F F

R

P F F

   
3

s s

s || s s2 2

g g

1 1
B 1 , C C C 2      P P

R R

  (4.5) 

This allows us to represent the Einstein tensor completely. We only have to prepare the 
right side of the field equations. The stress-energy tensor in the non-comoving system 

    mn mn 0 m n m C C CT pg p 'u 'u , 'u i v ,0,0,          (4.6) 

we write component by component 

 

 

   

2 2

11 C C 0 22 33

2 2 2

41 C C 0 44 0 C C 0

T p v p , T p, T p,

T i v p , T v p

        

            . (4.7) 
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The question arises of whether the stress-energy tensor can be geometrized, ie 
whether the quantities of the right side of the field equations can be brought into 
connection with the very different field quantities of the left side. If we calculate the 
quantities in the second brackets of (4.5) [15 # 31] 

    2 2 2

1 1 C C 0 1 4 C C 0
ˆ ˆ2U v p , 2U i v p       F F   (4.8) 

it is evident that the lateral subequations establish the necessary connection. If one also 
takes into consideration the U-equation, one has geometrized the stress-energy tensor. 
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5. DISCUSSION OF THE MODEL 

 In the preceding sections it has been suggested that a star which is subjected to 

the Schwarzschild collapse can contract only up to a minimum radius 
hr . We will show that 

this radius can be reached only asymptotically. First, we derive from 

 1 R
|4 ' 4 ' |1 C C R C C

dr
r L r i v a , i v

idT'


         

the collapse velocity. In the system in rest one has 1

Rdx dr  , in the comoving 1'dx 0 . 

For the connection of the proper times the Lorentz relation  CdT dT'    applies. With 

this one obtains from the above expression the collapse velocity 

 
1

C

dx
v

dT
 , (5.1) 

which we refer to the surface of the star. At this location is g g, 0r r , r ' r const.    From 

  R
C C R I R I

dr
v v v

dT'


       

we obtain 

  I R Idr v v dT'     

or taking into account (3.3) 

I I 0

1 r
dT' dr

v r r

 

. 

In it are I , Iv , and 0r constants. Integration results in a function 

 0 0 0

I I

1
f(r) r 2 r r 2r ln r r

v
     
 

, 

which is to be regarded in the range  h 0r ,r . Since r is an outgoing coordinate the collapse, 

however, is directed inwards, we shift the origin of the coordinate system to the position of 
the surface, and that at the beginning of the collapse. We let run inwards the new radial 

coordinate: 0 h 0 hr r r, r r r    . Then we have 

   0 0 h 0 0 h 0 h 0g(r) r r 2 r r r r 2 r r ln r r r r          . 
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If we choose the constant of integration as  0 0 h 0 hg(r ) 2 r r ln r r   , then the proper time 

at the beginning of the collapse is T' 0 . Finally, one has in the the range under 

consideration 

     0

I I

1
T' r g r g r

v
    

 .    (5.2) 

The function is depicted in Fig 5.1. 

 

Fig 5.1 

From this figure one can gather how much time has passed after the surface of the star 

has moved a certain distance 0r r . From 
hr r

lim T'(r)


   is apparent that the star needs an 

infinitely long time to reach the minimum radius. 

6. CONCLUSIONS 

The collapsing interior Schwarzschild solution has an inner horizon. It is identical to 
the above-mentioned pressure horizon and the velocity horizon. The star can never shrink 
to a point. The matter density, the pressure, and the curvature of space are never infinite. 
The inner horizon is above the event horizon of the exterior Schwarzschild solution. Thus, 
the formation of a black hole in this model is not possible. It describes an ECO (eternally 
collapsing object), as was predicted by Mitra [16] on the basis of astrophysical 
considerations. Since the exterior Schwarzschild solution has been proven and describes 
Nature well, one can assume that the interior solution can describe the interior of a star at 
least in a rough approximation. Although the two parameters, pressure and mass density 
are not sufficient to record the properties of a star, there is still hope that at least some 
basic properties of the model have general validity and that also more pretentious models 
do not exhibit unusual behaviors. 
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